3.197 \(\int \frac {\cos (c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=158 \[ \frac {(9 A+C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {3 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {(3 A+C) \sin (c+d x)}{2 a d \sqrt {a \sec (c+d x)+a}}-\frac {(A+C) \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

-3*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/2*(A+C)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)
+1/4*(9*A+C)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+1/2*(3*A+C)*sin(d
*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 158, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {4085, 4022, 3920, 3774, 203, 3795} \[ \frac {(9 A+C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {3 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {(3 A+C) \sin (c+d x)}{2 a d \sqrt {a \sec (c+d x)+a}}-\frac {(A+C) \sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-3*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + ((9*A + C)*ArcTan[(Sqrt[a]*Tan[c
+ d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Sin[c + d*x])/(2*d*(a + a*Sec[c
+ d*x])^(3/2)) + ((3*A + C)*Sin[c + d*x])/(2*a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3774

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(a + x^2), x], x, (b*C
ot[c + d*x])/Sqrt[a + b*Csc[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3920

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4085

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(
2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b*(
2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x]
&& EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\cos (c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\cos (c+d x) \left (-a (3 A+C)+\frac {1}{2} a (3 A-C) \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(3 A+C) \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {3 a^2 A-\frac {1}{2} a^2 (3 A+C) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^3}\\ &=-\frac {(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(3 A+C) \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}-\frac {(3 A) \int \sqrt {a+a \sec (c+d x)} \, dx}{2 a^2}+\frac {(9 A+C) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(3 A+C) \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}+\frac {(3 A) \operatorname {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}-\frac {(9 A+C) \operatorname {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=-\frac {3 A \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {(9 A+C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(3 A+C) \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.75, size = 167, normalized size = 1.06 \[ -\frac {\tan \left (\frac {1}{2} (c+d x)\right ) \left (2 \sin ^2\left (\frac {1}{2} (c+d x)\right ) (2 A \cos (c+d x)+3 A+C)+\sqrt {2} (9 A+C) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)-1} \tan ^{-1}\left (\frac {\sqrt {\sec (c+d x)-1}}{\sqrt {2}}\right )-12 A \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)-1} \tan ^{-1}\left (\sqrt {\sec (c+d x)-1}\right )\right )}{2 a d (\cos (c+d x)-1) \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-1/2*((-12*A*ArcTan[Sqrt[-1 + Sec[c + d*x]]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] + Sqrt[2]*(9*A + C)*Ar
cTan[Sqrt[-1 + Sec[c + d*x]]/Sqrt[2]]*Cos[(c + d*x)/2]^2*Sqrt[-1 + Sec[c + d*x]] + 2*(3*A + C + 2*A*Cos[c + d*
x])*Sin[(c + d*x)/2]^2)*Tan[(c + d*x)/2])/(a*d*(-1 + Cos[c + d*x])*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 3.17, size = 560, normalized size = 3.54 \[ \left [-\frac {\sqrt {2} {\left ({\left (9 \, A + C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (9 \, A + C\right )} \cos \left (d x + c\right ) + 9 \, A + C\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 12 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (2 \, A \cos \left (d x + c\right )^{2} + {\left (3 \, A + C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left ({\left (9 \, A + C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (9 \, A + C\right )} \cos \left (d x + c\right ) + 9 \, A + C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 12 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left (2 \, A \cos \left (d x + c\right )^{2} + {\left (3 \, A + C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(2)*((9*A + C)*cos(d*x + c)^2 + 2*(9*A + C)*cos(d*x + c) + 9*A + C)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) -
a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 12*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos
(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) -
a)/(cos(d*x + c) + 1)) - 4*(2*A*cos(d*x + c)^2 + (3*A + C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c
))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(sqrt(2)*((9*A + C)*cos(d*x + c)^
2 + 2*(9*A + C)*cos(d*x + c) + 9*A + C)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x
 + c)/(sqrt(a)*sin(d*x + c))) - 12*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x +
c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*(2*A*cos(d*x + c)^2 + (3*A + C)*cos(d*x + c))*s
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

giac [B]  time = 2.11, size = 444, normalized size = 2.81 \[ \frac {\frac {\sqrt {2} {\left (9 \, A + C\right )} \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} + \frac {12 \, A \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{\sqrt {-a} {\left | a \right |} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} - \frac {2 \, {\left (\sqrt {2} A a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right ) + \sqrt {2} C a \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}} - \frac {16 \, \sqrt {2} {\left (3 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} A - A a\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} \sqrt {-a} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}}{8 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/8*(sqrt(2)*(9*A + C)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(sqrt(-a)*
a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) + 12*A*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2
*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2
+ a))^2 + 4*sqrt(2)*abs(a) - 6*a))/(sqrt(-a)*abs(a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - 2*(sqrt(2)*A*a*sgn(tan(
1/2*d*x + 1/2*c)^2 - 1) + sqrt(2)*C*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan
(1/2*d*x + 1/2*c)/a^3 - 16*sqrt(2)*(3*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*
A - A*a)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x +
 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)*sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d

________________________________________________________________________________________

maple [B]  time = 1.95, size = 561, normalized size = 3.55 \[ -\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (6 A \sqrt {2}\, \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right )+6 A \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+9 A \sin \left (d x +c \right ) \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+C \sin \left (d x +c \right ) \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+9 A \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-4 A \left (\cos ^{3}\left (d x +c \right )\right )+C \ln \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )+1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-2 A \left (\cos ^{2}\left (d x +c \right )\right )-2 C \left (\cos ^{2}\left (d x +c \right )\right )+6 A \cos \left (d x +c \right )+2 C \cos \left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{4 d \sin \left (d x +c \right )^{3} a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/4/d*(-1+cos(d*x+c))*(6*A*2^(1/2)*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(1/2*(-2*cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)+6*A*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+9*A*sin(d*x+c)*
ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(
1/2)*cos(d*x+c)+C*sin(d*x+c)*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2
*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+9*A*ln(((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c
)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-4*A*cos(d*x+c)^3+C*ln(((-2*cos(d*x+c)/(1+cos(
d*x+c)))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-2*A*cos(d*
x+c)^2-2*C*cos(d*x+c)^2+6*A*cos(d*x+c)+2*C*cos(d*x+c))*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)^3/a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\cos \left (c+d\,x\right )\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)*cos(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________